## Preparation and Structure of the IOF<sub>6</sub><sup>-</sup> and TeF<sub>7</sub><sup>-</sup> Anions

## Ali-Reza Mahjoub and Konrad Seppelt\*

Institut für Anorganische und Analytische Chemie, Freie Universität Berlin, Germany

The compounds  $Me_4N+IOF_6^-$  and  $Me_4N+IF_7^-$  have been prepared; both anions have a pentagonal bipyramidal structure, and in  $IOF_6^-$  the oxygen occupies an apical position.

Unexpectedly, octahedral IOF5 exhibits Lewis acidic behaviour towards F<sup>-</sup> if the latter is present as tetramethylammonium fluoride.<sup>1</sup> From Me<sub>3</sub>CN solutions Me<sub>4</sub>N+IOF<sub>6</sub><sup>-</sup> can be grown as large colourless crystals (m.p. 172°C).† The structure of this novel anion is pentagonal bipyramidal as established by NMR and vibrational spectroscopy and especially by crystallography. <sup>19</sup>F NMR spectroscopy shows a doublet at  $-\delta$  167.0 and a partially resolved binominal sextet at  $\delta$ -113.6, J 195 Hz. The considerable line width of about 100 Hz may be caused by partially quadrupole-collapsed spin coupling to the iodine nucleus with J 5/2 such as in IOF<sub>5</sub>. Oxygen must be in the second apical position. The anion does not undergo intramolecular ligand exchange within the NMR time scale. Raman spectra of  $IOF_6^-$ , if compared with  $TeF_7^-$  (see below) and IF<sub>7</sub> are also in accord with this peculiar structure, see Table 1. The crystallographic analysis of Me<sub>4</sub>N+IOF<sub>6</sub>suffers from a fourfold disorder or a systematic twinning. Treatment of the data with normal procedures assuming a disorder or with a mathematical procedure for twinned crystals<sup>4</sup> results in the structure as shown in Fig. 1.‡

Since it is the equatorial fluorine atoms that are affected by disorder or twinning, errors of bond distances and angles can be larger here than the  $\sigma$ -values indicate. The structure has the remarkable feature that the five equatorial fluorine atoms are

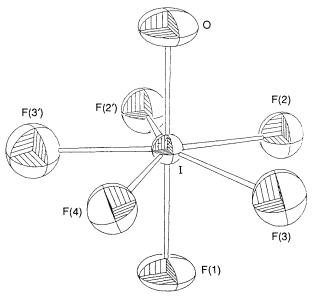



Fig. 1 Molecular structure of the  $IOF_6^-$  anion. The ellipsoids represent 50% probability. The  $F(1)_1$ -I-O linkage is linear due to crystallographic symmetry. Owing to disorder or twinning bond distances and angles among the equatorial fluorine atoms remain more uncertain than indicated: I–O 1.775(6), I–F(1) 1.820(5), I–F(2) 1.902(7), I–F(3) 1.871(11), I–F(4) 1.824(13) Å; O–I–F(2,3,4) 96.2–96.9 (2–4), F(2)–I–F(3) 69.5(5), F(3)–I–F(4) 76.7(18), F(2)–I–F(2') 65.4(4)°.

<sup>†</sup> Satisfactory elemental analysis was obtained.

<sup>‡</sup> Crystal data for Me<sub>4</sub>N+IOF<sub>6</sub><sup>-</sup>, P<sub>4</sub>/nmm (No. 129) or Pmmn (No. 59, twinned), a = 8.779(2), b = 8.787(3), c = 6.331(1) Å, U = 488.3 Å<sup>3</sup>, Z = 2,  $\mu = 34.2$  cm<sup>-1</sup>,  $\lambda = 0.7107$  Å, T = -163 °C. The data were collected on an Enraf-Nonius CAD 4 diffractometer using monochromatized Mo-Kα radiation via the  $\omega$ -2θ scan technique. 3517 reflections measured in ±h,+k,+l within 2°≤θ≤40°, 210 systematically absent (h,k,0≠2n), 877 unique reflections tetragonal, 885 with  $I \ge 3\sigma(I)$ .  $R_w = 0.036$ , R = 0.039 for all atoms anisotropic, except the disordered equatorial fluorine atoms (isotropic) and H atoms (isotropic in fixed positions).

A detailed description of the twinning problem and listings of the atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Table 1 Raman spectra of  $IOF_6^-$ ,  $TeF_7^-$  and  $IF_7^{-a}$ 

| Me <sub>4</sub> N+IOF <sub>6</sub> -                                 | Me <sub>4</sub> N+TeF <sub>7</sub> <sup>-</sup>                           | Cs+TeF <sub>7</sub> <sup>-</sup><br>(ref. 2) | IF <sub>7</sub><br>(ref. 3) |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|-----------------------------|
| $871 \text{m} (\text{vIO}, A_1)$<br>$655 \text{m} (\text{vIF}, A_1)$ | $640s(v_sTeF_2, A_1')$                                                    | 652vs                                        | 6755                        |
| $583s(v_{s}IF_{5}, A_{1})$                                           | $597m (v_s TeF_5, A_1')$                                                  | 593s                                         | 629vs                       |
| $456m(v_{as}IF_5, E_2)$                                              | $459 \mathrm{m} (\mathrm{v}_{\mathrm{as}} \mathrm{TeF}_5, \mathrm{E}_2')$ | 455s                                         | 509m                        |
| 343s (δ)                                                             | $325m(\delta_{as}TeF_5, E_2')$                                            | 305m                                         | 342m                        |
| 333w (δ)                                                             | $287s \left( \delta_{s} TeF_{5}, A_{2}'' \right)$                         |                                              | 308m                        |

<sup>a</sup> Lines of the Me<sub>4</sub>N<sup>+</sup> cation have been omitted. The assignments are based on  $C_{5h}(IOF_6^-)$  and  $D_{5h}(TeF_7^-)$  symmetries.

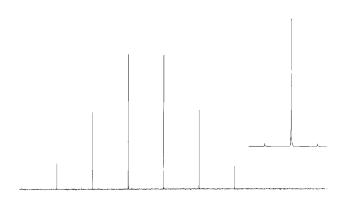



Fig. 2  $^{125}\text{Te}$  NMR spectrum of Me\_4N+TeF7^ in MeCN solution, 25  $^{\circ}\text{C}$  $[24.83 \text{ MHz}, \delta - 129.7, H_6 \text{TeO}_6 - H_2 \text{O ext}, J(125_{\text{Te}} - 19_{\text{F}}) 2876 \text{ Hz}].$ Insert: <sup>19</sup>F NMR of TeF<sub>7</sub>- [84.25 MHz; 817.0, CFCl<sub>3</sub> ext. J(125<sub>Te</sub>-19<sub>F</sub> 2875 Hz].

approximately in one plane, below the iodine atom if viewed from the oxygen atom. No puckering of the equatorial fluorine atoms, as proposed for  $IF_{7}$ ,<sup>5</sup> is observed. The single apical fluorine bond distance is shorter than the average of the equatorial ones.

Reaction of  $TeF_6$  with  $Me_4N^+F^-$  in MeCN affords  $Me_4N^+TeF_7^-$  and insoluble  $(Me_4)_2TeF_8$  that are analogous to the previously described CsTeF7 and Cs2TeF8.<sup>2</sup> Me4N+TeF7<sup>-</sup> can also be grown as large, colourless crystals that have a very similar unit cell to  $Me_4N+IOF_6^-$  but with a still unresolved twinning and/or disorder problem. The identity of this material is, however, obvious from the vibrational data by comparison with IF7, and particularly by <sup>125</sup>Te and <sup>19</sup>F NMR, see Fig. 2. The binominal octet in the <sup>125</sup>Te NMR spectrum proves not only the composition but also the non-rigidity of the anion  $TeF_7^-$ , very much like IF<sub>7</sub>. The unexpected rigidity of the  $IOF_6^-$  anion is probably a result of the fact that any kind of pseudorotational ligand exchange process will interchange the apical oxygen position into an unfavoured equatorial one.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Received, 22nd February 1991; Com. 1/00865J

## References

- 1 For a preparation of pure Me<sub>4</sub>N+F<sup>-</sup> see W. W. Wilson, K. O. Christe, J. Feng and R. Bau, J. Am. chem. Soc., 1990, 112, 7619.
- 2 E. L. Muetterties, J. Am. Chem. Soc., 1957, 79, 1004; H. Selig, S. Sarig and S. Abramovitz, *Inorg. Chem.*, 1974, 13, 1508.
  H. H. Classen, E. L. Gasner and H. Selig, *J. Chem. Phys.*, 1968, 49,
- 1803; H. H. Eysel and K. Seppelt, J. Chem. Phys., 1972, 56, 5081.
- 4 H. Bärnighausen, Z. Kristallogr., 1985, 170, 5.
- 5 W. J. Adams, H. B. Thompson and L. S. Bartell, J. Chem. Phys., 1970, 53, 4040.